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Introduction to PEV impact studies
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Overview - PEV

 Plug-in Electric Vehicles (PEV) are coming

 National security in a traditional sense (energy policy)

 National security in a broader sense (climate change)

 PEV penetration projection varies significantly, however, the

impact to power systems may arise in an early stage due to

vehicle clustering effect

 Utilities have concerns over the increasing PEV popularity

impacting their systems
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Methodology

 A framework for long term PEV impact study on distribution

systems

 Feeder characteristics can significantly differ

 PEV impact is non-linear function of penetration rate

 Key components:

 Representative feeder approach (statistical cluster analysis)

 Sweep analysis (a wide range of penetration rates)

 Monte Carlo simulation
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Methodology (cont.)
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Methodology (cont.)
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Data collection

 PEV penetration rate

 PEV battery charging profile

 PEV charging scenario

 Driving Pattern Based:

o Charging duration calculation needed

 Time Stamp Based:

o No charging duration information needed

o Instead: hourly PEV charging distribution and co-incidence

factors
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Driving pattern based PEV charging scenarios

 PEV charging scenarios are developed based on vehicle usage

patterns

 National Household Travel Survey 2009 by U.S. Department of

Transportation

 Trip end time determines charge start time

 Trip duration determines charging duration (charge end time)

 Solid data support, if travel data available
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Driving pattern examples

Urban Area Home to Office Commute 

Trip Distance Distribution
Urban Area Office to Home Commute 

Trip End Time Distribution

Non-Urban Area Errand Trip Distance 

Distribution
Non-Urban Area Errand Trip End Time 

Distribution
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Sample results: feeder loading

 Driving pattern based charging scenario; typical circuit design,

national average travel pattern
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Time stamp based PEV charging scenarios 

 PEV charging scenarios are developed based on charging

distribution projection

 Applied when no statistically representative travel data is

available

 Typically utility envisioned PEV charging patterns

 Focus on instantaneous charging patterns, no charging duration

considered

 Additional information may be needed, such as co-incidence

factors
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Charging scenario examples

 Utility envisioned charging scenarios:

Residential Charging as an Example



Page 14© 2011 Quanta Technology, LLC.

Sample results: transformer overload

 Time stamp based charging scenario:
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System-wide results

 Extrapolated from individual feeder studies:
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Mitigation measures 

 Mitigation options include capacity increasing approaches and

charging management (smart grid technologies)

 Traditional T&D solutions

 Replace overloaded transformers

 Reconductor overloaded line sections

 Under voltage often eliminated by reconductoring. If not, install

capacitors or voltage regulators

 Feeders exceeding planning limits can be unloaded by building

new feeders or transferring loads to neighbor feeders

 Etc.
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Charging management

 Many of the impacts can be resolved by controlling the time

and duration of PEV charging

 Additional infrastructure, metering, monitoring and control

equipment such as automated (smart) metering system will be

required for two way communication

Opportunity Near Term Long Term 

Tariff/TOU Rates Tiered TOU Rates 
Real Time Pricing  (RTP) 

Critical Peak Pricing (CPP) 

Smart Charging User/Vehicle Controlled Charging Utility Controlled Charging 
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Impact of controlled charging

 An example from a utility specific study:

 For penetration levels below 20%, overloaded conductor and

customers experiencing under voltage were eliminated

 For penetration levels between 25 and 60%, the amount of

overloaded conductor and customers experiencing under

voltage were reduced by half when compared with the

uncontrolled scenario

 At high penetration levels, the impact on overloaded conductor

and customers with under voltage was the same for both

scenarios



Page 19© 2011 Quanta Technology, LLC.

Potential benefits

 A new, and attractive, revenue source for utilities

 Improve load factor and asset utilization

 Potential for integration with smart grid initiatives, Distributed

Energy Resources (DER) like Photovoltaic Distributed Generation

(PV-DG), and Distributed Energy Storage (DES)

 Potential for advanced applications such as Vehicle to Grid (V2G)

 Utilities are starting to explore concepts such as integration of

PEVs, PV-DG, and Community Energy Storage (CES) via low

voltage (DC) secondary buses
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Introduction to PV impact studies
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Introduction to PV-DG integration studies
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Background

 PV-DG is rapidly growing, not only in the southwest!

 Utilities along North America must comply with Renewable Portfolio

Standards (RPS) requirements (e.g., the goal for the state of

California is 33% by 2020)

 There are incentives in place

 PV-DG has diverse impacts on distribution system planning and

operation (e.g., solar intermittency due to cloud cover can have a

significant impact on voltage variations)

 Impacts are not localized and grow as proliferation increases

 Impacts are not only of steady state but also of

dynamic/transient nature (e.g., Transient Overvoltage TOV)

 This may represent a challenge for distribution planners, who are

used to deal with steady state studies but not be familiar with

dynamic modeling and analysis
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 Typical Scope Of Work

 Identify the local and/or system-wide impacts of PV-DG on the

power distribution grid

 Provide utility customers with guidelines regarding the expected

impacts as a function of the penetration degree of PV-DG

 Determine potential mitigation measures for any problems

discovered in the study

 Additional Tasks

 Inverter testing in a laboratory setting

 Development of interconnection standards (PV-DG readiness

studies)

Impact studies
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Objectives

 Understand steady-state impacts

 Understand dynamic impacts

 Identify adverse impacts 

 Determine remedial measures and economic impacts
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PV-DG types

 Utility scale PV-DG: large commercial PV-DG plants with capacities

larger than 1 MW (three-phase generation)

 Medium scale PV-DG: small commercial PV-DG with capacities

between 10 kW and 1 MW (it can be three-phase or single-phase)

 Small scale PV-DG: small residential PV-DG under NEM agreements.

Capacities less than 10 kW (single-phase generation)
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Uncertainties

 Utility scale PV-DG: utilities know where they will be installed, e.g.,

on industrial feeders, on rooftops of large warehouses, studies are

more deterministic in nature and impacts are localized

 Small and medium scale PV-DG: they are being installed on

residential and commercial feeders, studies are non-deterministic

in nature (we have to deal with uncertainties and different

penetration scenarios) and impacts are spread along the system

 Proliferation of PV-DG also implies propagation of power electronic

devices in the utility system (inverters). This means that we have to

pay more attention to harmonics and their interaction with system

components such as capacitors, and have to perform power

quality studies to evaluate potential impacts.
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Need for steady state and dynamic simulations

 These impacts can only be studied through simulations, we have to

use both steady state software and “dynamic” simulation software

 In order to model and handle uncertainties we may need to perform

thousands of simulations (statistical scenario modeling)

 Potential impacts are:

 Reverse power flow

 Interaction with LTC, capacitor banks and voltage regulators

 Voltage variations

 Reactive power fluctuations

 Losses increase and power factor modification

 Potential impacts on overcurrent and overvoltage protection

systems

 Voltage unbalance (single-phase PV-DG)

 THD increase
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Methodology
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Representative feeders

 Large PV-DG: utilities are interested in impacts on a set of

individual feeders, representative feeders are identified from

interconnection request database

 Simulations are conducted for each feeder for a set of

predefined scenarios

 Medium and small scale PV-DG: utilities are interested in overall

system impact, representative feeders are identified using a

clustering algorithm (it is labor, time and cost prohibitive to study

all system feeders)

 Thousands of simulations are performed to model uncertainty

for different scenarios. Simulations are conducted using a

statistical approach but only for the representative feeders.

Results are extrapolated to the system
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Steady state simulation overview

 Analysis of different PV-DG penetration scenarios

 Inputs

 Typical PV-DG injection profile

 PV-DG capacity (kW)

 Feeder models (distribution analysis software)

 24 hour feeder load curves and status of voltage control

equipment (voltage regulators and capacitor banks)
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Approach for utility scale PV-DG

 Analysis for utility scale PV-DG consists on the modeling and

simulation of a combination of several feeder loadings and PV-

DG injection conditions

 The worst impacts are expected if a combination of low feeder

loading conditions (daylight) and high injection of PV generation

occurs. This may cause reverse power flows and overvoltages
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Approach for small / medium scale PV-DG
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Results (utility scale PV-DG)
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Results (utility scale PV-DG)
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Results (utility scale PV-DG)
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Results (small and medium scale PV-DG)

 Significant impacts may occur for high penetration levels. This will 

likely cause reverse power flows and overvoltages, particularly 

on “weak” feeders.
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Results (small and medium scale PV-DG)
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Why dynamic analyses are necessary?
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Dynamic simulation overview

 Study focus

 Large-scale integration of solar PV generation

o Utility scale PV-DG (three-phase)

o Residential PV-DG (single-phase)

 Impact of PV-DG intermittency, islanding and feeder transient and

switching phenomena

 Typical study scenarios

 Sudden change in solar radiations (intermittency)

 Islanding cases, e.g., opening of feeder circuit breaker

 Feeder voltage variations (e.g., load connection/disconnection)
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 Potential issues such are temporary overvoltages can occur during

islanding conditions (main breaker operation)

 Results from dynamic simulations are of critical importance for

ensuring the reliable operation of feeders with utility scale PV-

DG

 Dynamic/transient impacts of PV-DG cannot be identified using

conventional distribution analysis software, more detailed modeling

and simulations are necessary

 Dynamic and steady state studies are complementary. Dynamic

analyses help define criteria and standard for integration and

operation of PV-DG on power distribution systems

Dynamic analysis
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Feeder Voltage
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Results (utility scale PV-DG)

Feeder Voltage
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Feeder Voltgae profile
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Mitigation measures

 The objective of the mitigation measures is to reduce or minimize

impacts caused by the interconnection of PV-DG to distribution

systems

 Common mitigation measures include:

 Operating PV-DG at leading power factor (absorbing VArs)

 Modifying operation mode of line voltage regulators (e.g., to

cogeneration or bidirectional modes)

 Relocating capacitor banks and modifying settings of capacitor

banks (e.g., switching off fixed capacitor banks and modifying

switch off and switch on settings of voltage-controlled banks)

 Modifying reference voltage of Load Tap Changers (LTCs) and

compensating current offset on Line Drop Compensation (LDC)

applications

 Using express feeders for interconnection of large utility-scale

PV-DG facilities
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Mitigation measures

 More advanced mitigation measures may include:

 Using Distributed Energy Storage (DES)

 Using Static Synchronous Compensator (D-STATCOM)

 Implementing a dynamic VAr compensation scheme via PV-DG

inverters

 Increasing express feeder design voltage (e.g., using 25 kV

instead of 13.2 kV)
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Mitigation measures – example (PV)
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Mitigation measures – example (PV + mitigation)
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Mitigation measures – example (no PV)
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Mitigation measures – example (PV) 
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Mitigation measures – example (PV + mitigation)
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Voltage difference (no mitigation)
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Voltage difference (mitigation)
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Comparison (no mitigation vs. mitigation)
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Potential benefits

 If intermittency and firmness issues are addressed e.g., by using

Distributed Energy Storage (DES), potential benefits of PV-DG are:

 Capacity release: for moderate penetration levels (enough for

offsetting the feeder load) PV-DG help unloading feeder sections,

moderately reducing feeder losses, and releasing feeder and

substation capacity. This applies only to “daylight peaking” feeders
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Potential benefits

 Local voltage support: if located on areas where this is required

and if interaction with capacitor banks and intermittency are

properly managed

 Increased operational flexibility: PV-DG may be used to facilitate

feeder restoration, e.g., if used as part of a microgrid, it may help

improve system reliability. There are practical applications in place

that demonstrate this concept, e.g., AEP’s Balls Gap substation
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PEV, PV-DG and DES synergies

 If the energy generated by PV-DG plants could be stored and

released when PEVs are being charged then it could provide the

following benefits:

 Mitigate the impacts caused by PV-DG, e.g., overvoltages

 Mitigate the impacts caused by PHEVs, e.g., overloads

 Therefore, the utilization of DES would allow utilities “killing two

birds with one stone”

 Moreover, this solution would increase the operational flexibility of

the distribution system
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PEV, PV-DG and DES synergies

 This idea is illustrated in the following figures
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PEV, PV-DG and DES synergies

 This idea is illustrated in the following figures
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Conclusions
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Conclusions

 PEV impacts in some feeders may be of significance even at low

penetration levels if charging is uncontrolled, this depends on

specific feeder features such as voltage levels and load profiles and

customer behavior (driving and charging patterns). Some of the

potential impacts are:

 Overloaded distribution transformers

 Overloaded conductors and cable

 Low voltage to customers

 Violations of planning limits

 Most of these impacts can be resolved by directly or indirectly

(customer incentives) controlling the time and duration of PEV

charging
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Conclusions

 Based on these results the following measures can be

recommended:

 Utilities should understand the potential impact of PEVs on their

respective service territories.

 Set up a system to identify new PEVs when they come onto the

system. A key to managing costs and keeping impacts to a

minimum through pro-active actions is to know where the PEVs

are before problems become serious.

 Study how PEV adoption rates, particularly on a local-area

basis, can be predicted or trended, in order to support planning

of required additions
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 Studies for large scale PV-DG usually require analyzing specific

plant locations and penetration scenarios. Studies for residential

and commercial scale PV-DG require statistical analyses for

handling uncertainty about location and occurrence. Moreover, they

require analyzing a set of representative feeders and extrapolating

results to overall system. These studies analyze both steady state

and dynamic conditions

 Dynamic/transient impacts of PV-DG cannot be identified using

conventional distribution analysis software, more detailed modeling

and simulations and specialized software are necessary

 Typical impacts are reverse power flow, reactive power fluctuations,

interaction with capacitor banks and voltage regulators, voltage

variations, reactive power fluctuations, localized overloads

(distribution transformers and lines), etc.

Conclusions




